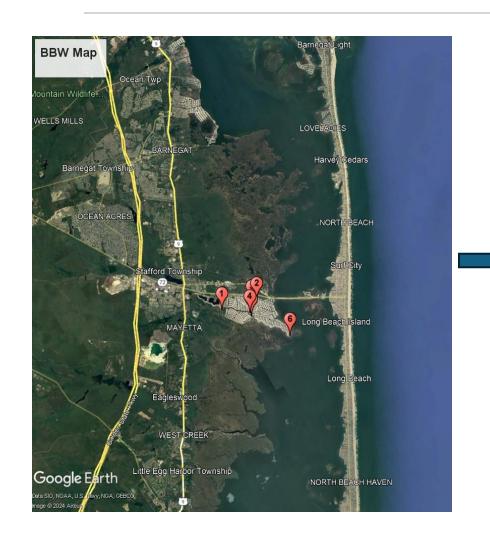
Save Barnegat Bay Water Quality Project

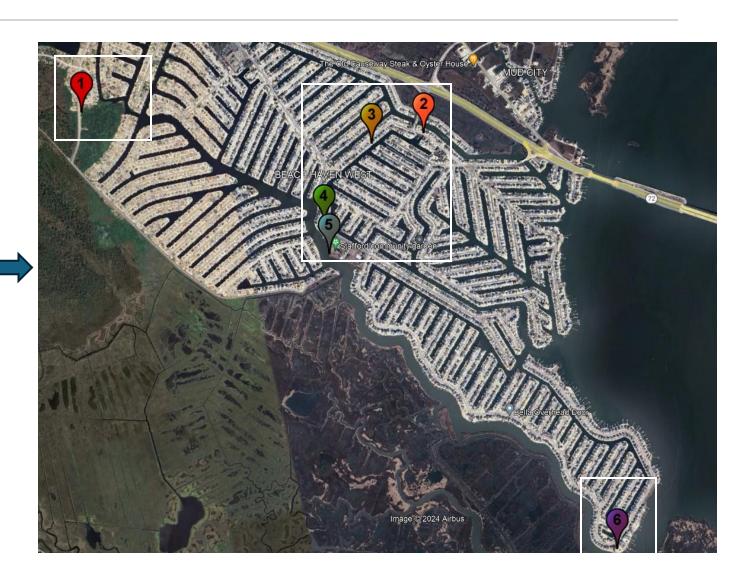
Kayla Sullivan, Stockton University and Melanie Thorn, NJ Watershed Ambassador

Importance of water quality in coastal lagoons

- Home to a large diversity of species
- Lagoons attract human activity
 - Boats
 - Herbicides
 - Construction
- Lack of flow
- This could impact water quality thus impacting humans
 - Decline of food, swimming, and jobs

Recent news on July 30th - Massive fish kill in Little Egg Harbor Lagoon


Our Project



- Goal: Test 6
 strategic sites in
 Beach Haven West
 to evaluate the
 water quality in this
 area
- Goal Pt 2: To evaluate the effects of the new sewer system at two of the sites (Sites 3 & 4)

The study sites

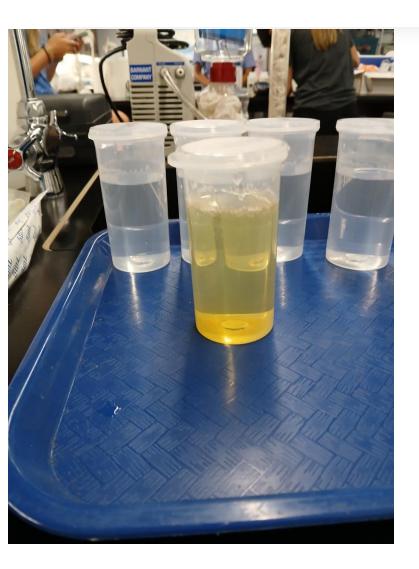
Methods in the Field

YSI ProPlus and collecting sample bottles and Whirlpack bags

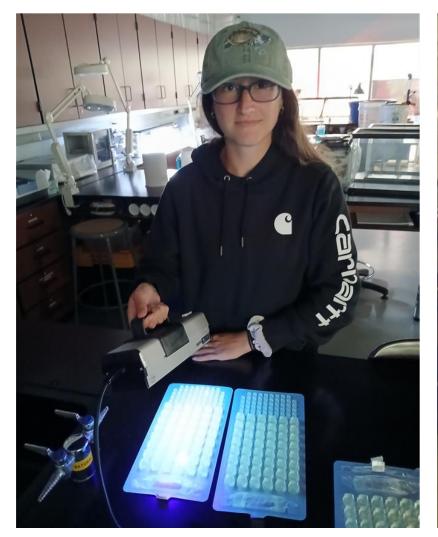
Methods in the Lab

 Aquafluor handheld fluorometer (chlorophyll - RFU), Aquafluor turbidity meter (NTU), and pH testing

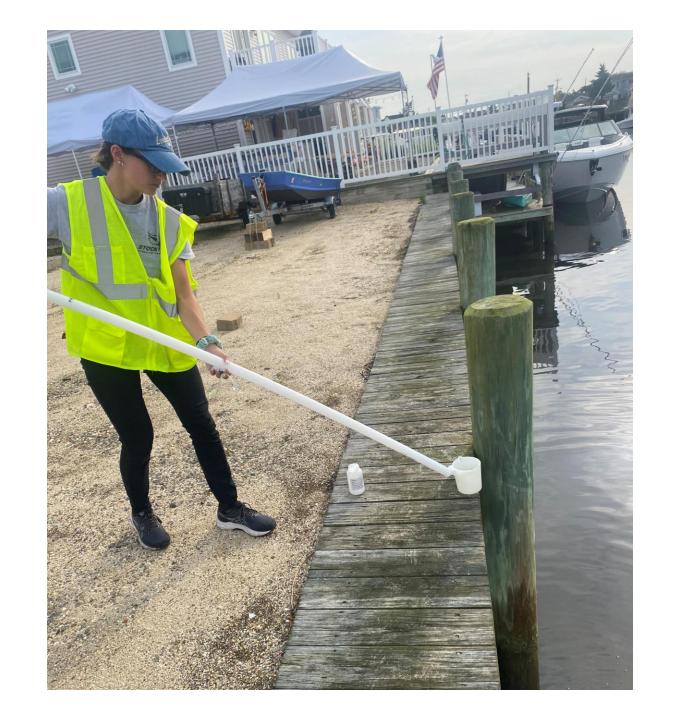
Turbidity

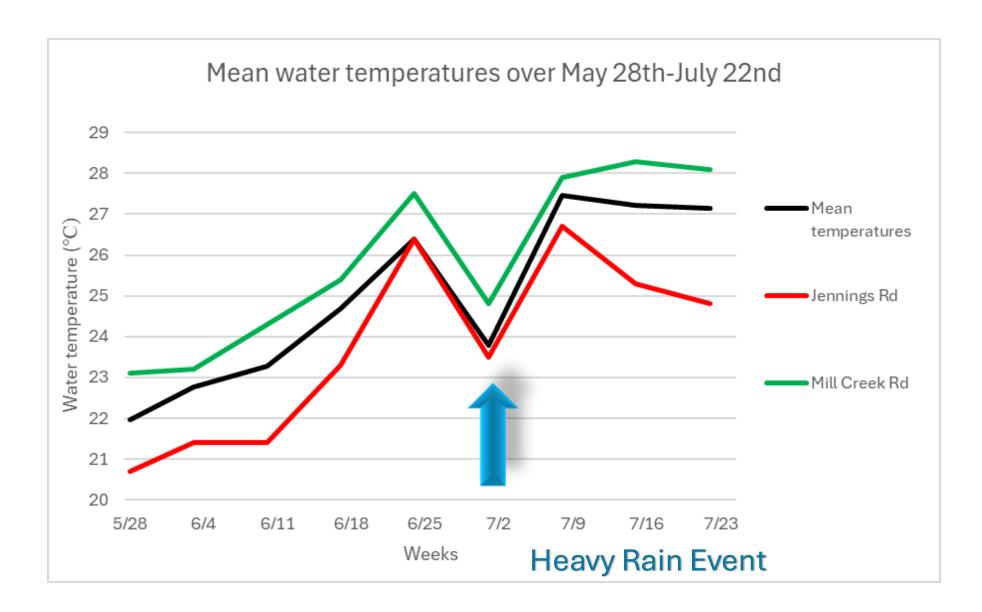

Nitrates (ppm) and Suspended Solids (mg/L)

- Nitrates: Two nitrate tablets were crushed up into each sample then dissolved for 5 minutes before being placed into the tester (Zinc reduction).
- Not as accurate as other methods (Cadmium reduction).
- Suspended solids: The filter paper was weighed then 100mL of the sample was poured over the paper through a vacuum. The filter paper was dried and weighed again.

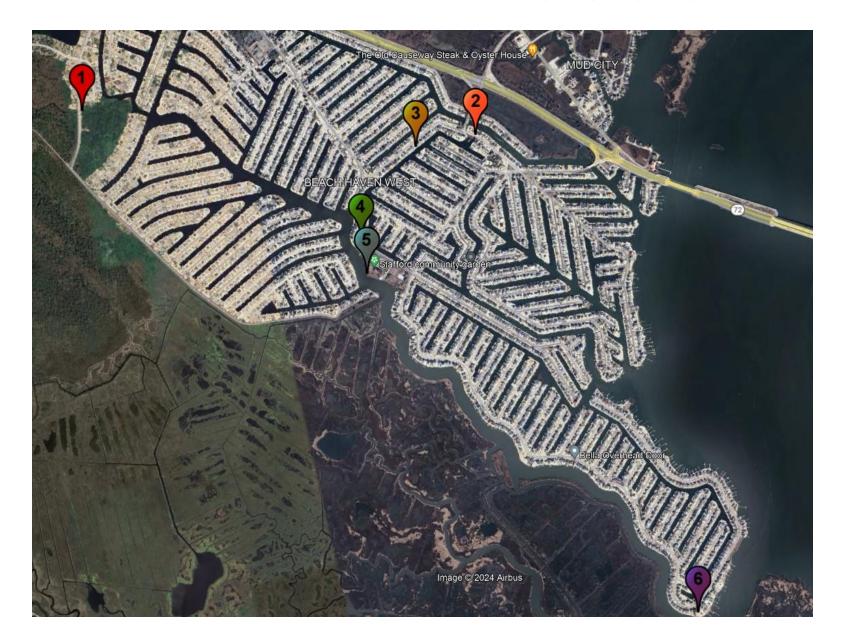

Bacteria testing (Enterolert - IDEXX Method (US EPA 40 CFR Part 141, drinking water)

Bacteria testing data

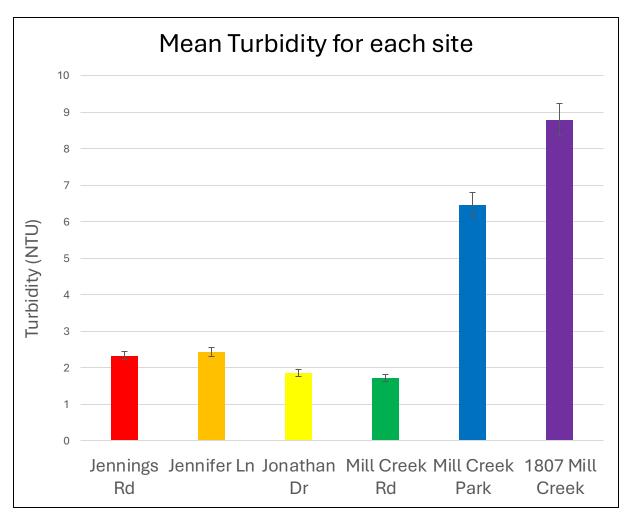


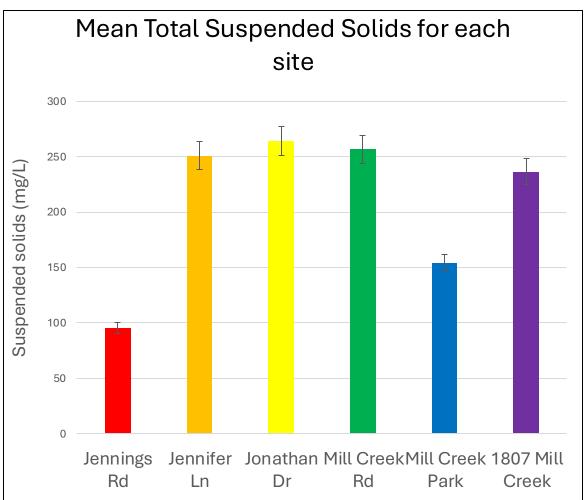

		NELLEY.	*****			222									
		CQuanti-Tray /2000 MPN Table													
Public Position								- 3			- 14		Walte Pa	-	
-	100				4.0	9.0	6.0	.14	. 9.0	8.0	- HA	10.6	10.0	10.0	
200	1 54			4.0	18.0	4.6	100	0.1	9.1	961	20.4	50.1	11.2	141	
	44	244	43	100	0.0	291	10	9.0	10.6	0.83	19.4	19.5	24.6	86	
0.0	100	141	9.1	4.4	058	9.5	10	19.3	11.8	10.4	10.4	161	164	100	
10	143	2.0	6.5	1.8	10.0	9.5	154	054	16.6	10.8	144	10.4	10.71	101	
	1.0	4.0	0.0	8.1	5.4	91.6	914100	0.6	-O.E.	14.8	194	16.6	100	-	
4	4.5	2.4	44	9.5	10.8	718.	19.7	12.8	14.8	116.6	17.6	76.1	19.8	30.0	
	23	4.5	44	43	11.8	. 16.6	110	19.9	34.5	1112	19.8	16.4	20.5	.21	
	111	87	118	11.6	14.0	74.1	913	16.0	114	16.6	194	817	15.6	100	
2.6	44	75.4	□ 7488	191	24.0	19.8	16.4	17-8	19.7	19.0	pt a	40.0	21.0	34	
10	714	19.7	1944	18.6	19.5	16.8	0.00	19.5	20.6	7511	in a	3114	36.6	- 31	
99	10.0	10.4	He	154	19.6	17.8	11.79()	30.5	21.6	OHA!	81.1.	212	79.0	- 37.6	
10	15.6	0408	75.8	949	18.1	76.5	304	95.6	Dist.	30.8	200.4	36.3	216	1,00	
1981	14.8	14.0	79.8	11/4%	19.9	304	PIR.	(2) 0	14.2	264	- in4	27.9	28.5	91.	
14	98.5	11.2	19.0	11.940	26.6	30.1	25.8	36.0	10.7	489	me	201.0	217	91	
10	MA	94.1	18.9	101	31.1	30.5	34.7	01.8	\$0.8	- 39.4	70-4	353	70.1	10	
14	1940	81.	9.8	1100	20.6	- At	161	11.5	367	201	0.3	20.6	SMA.	31	
47	MA.	214	304	34.1	56.4	26.6	PIA.	29.1	34.9	75.8	30.4	043	-31.4	100	
100	319.0	761	263	25.6	26.6	29.1	364	905	30.0	99.9	(m.s.	201	20.0	100	
19	25.1	24.8	36.8	17.3	26.0	29.6	383	35.4	19.7	36.6	M.1-	27.8	95	(4)	
#	24.6	36.3	25.5	26.6	36.1	41.6	32.0	34.1	-91.4	36.6	3611	3664	40.6	48	
83.	15.5	37.9	1911	. PH. C.	21.0	31.2	94.5	10.8	77.8	344	A10.	ALA	10.5	24	
200	263	361	363	7800	30.4	76-0	36.4	朝井	38.1	Mill	(40)	+9.3	-114	100	
10	768	21.8	MA	364	36.6	36.6	16.2	10.7	41.5	448	403	45.4	41.9	18	
24	.91,5	28.7	[41.5.	34.0	111 1	30.6	468	(417)	4910	94.8	46.0	473	44.5	1,00	
	30.6	96.6	364	010	36.0	401	ALE:	43.7	41.2	46.7	48.5	497	218	- 46	
26	30.6	36.6	26.4	.10.9	0.6540	40.8	34.5	40.0	404	44.4	564	10.0	20.9	. 94	
27	354	26.0	854	401	40.6	44,8	46.5	100.0	40.0	813	14.6	30.4	44.0	10	
38	26.3	41.5	est.	144.7	45.7	47.5	44.6	46.4	10.0	81.6	MA	36.5	18.5	90	
26	61.5	40.2	AAS.	10.6	461	49.0	THE.	10.6	94.6	106.15	37 K	20.5	#1.E	- 10	
No.	45.8	45.5	421.	ART	304	30.7	86.7	15.4	071	19.0	. 460	102	10.0	96	
	15.2	419	19.1	21.2	25.0	24.8	20.01	1861	30.6	40.80	61.1	46.1	96.8	1 86	

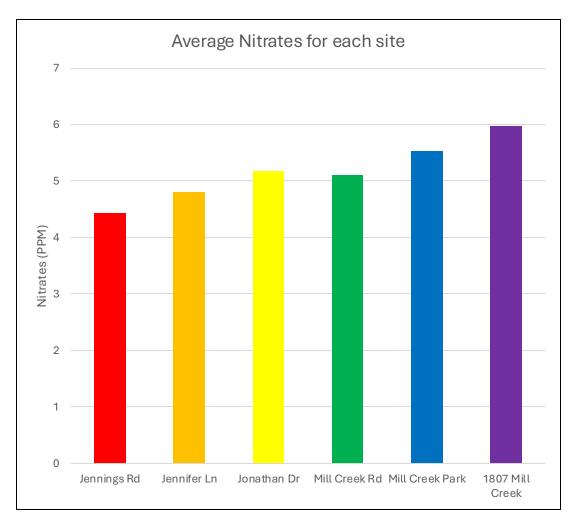
Results

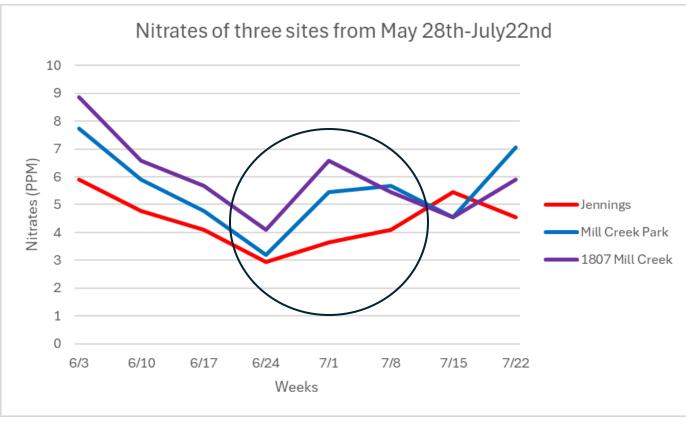

Temperature, Turbidity, Suspended Solids, Nitrates, Chlorophyll, Specific Conductivity (Salinity) and Bacteria

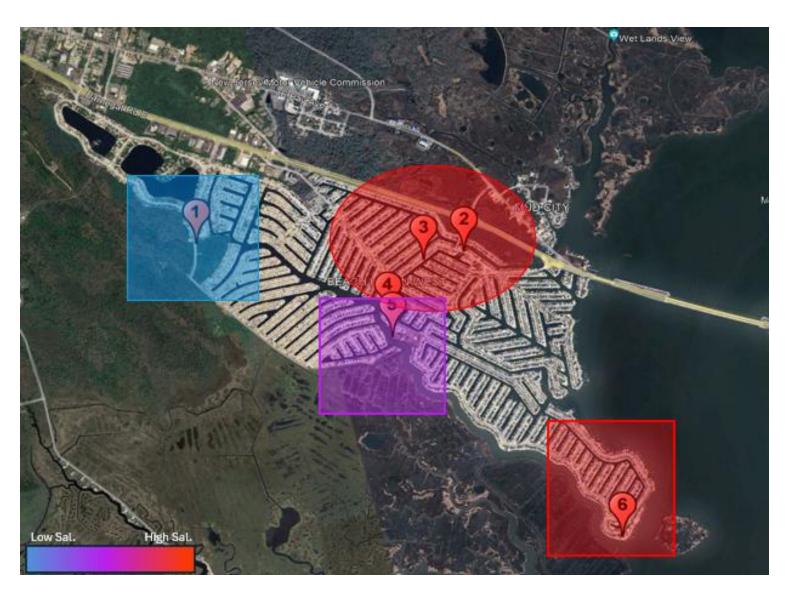
Temperature (Celsius)



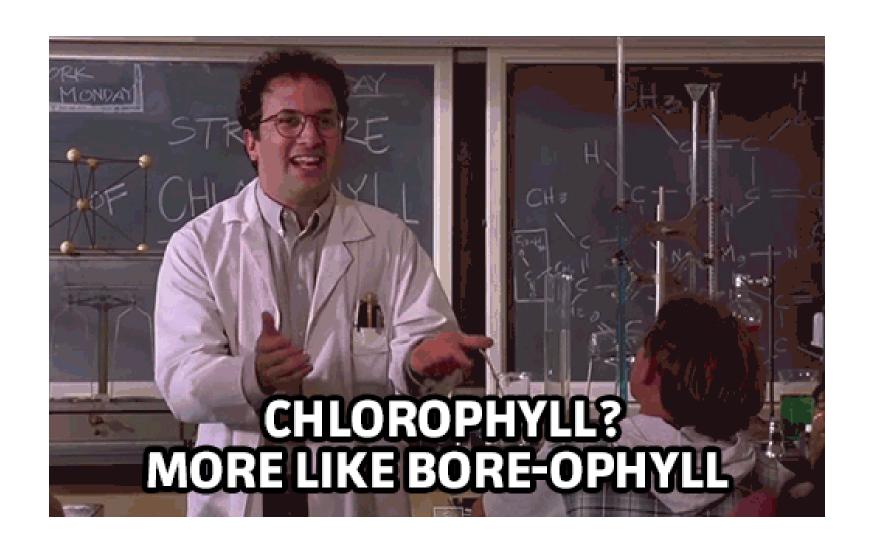

Site review


- Sites are color-coded to match with the graphs
- More emphasis on site
 2 (Jennifer Ln), site 3
 (Jonathan Dr) and site
 4 (Mill Creek Rd)

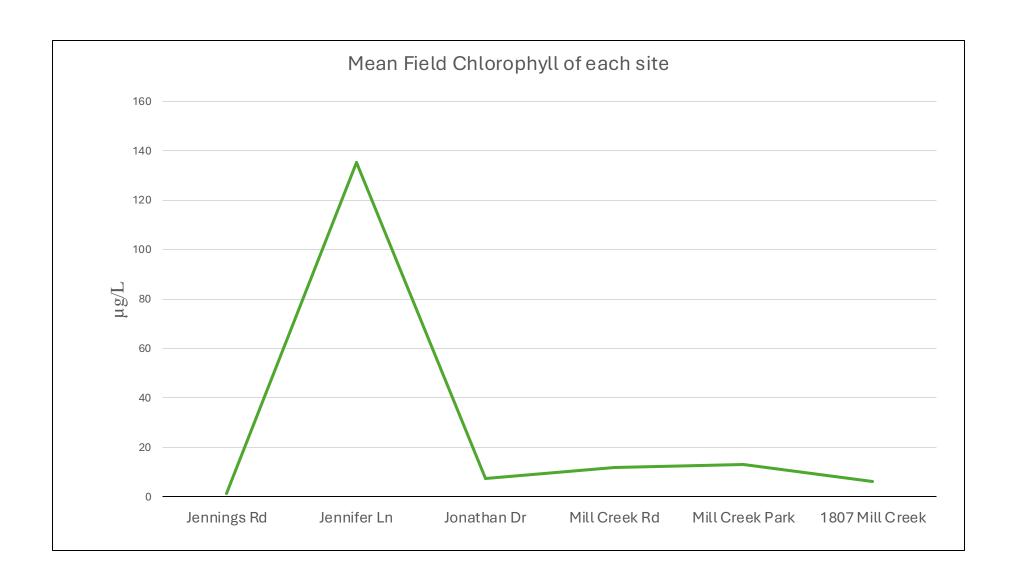

Turbidity (NTU) and Total Suspended Solids (mg/L)



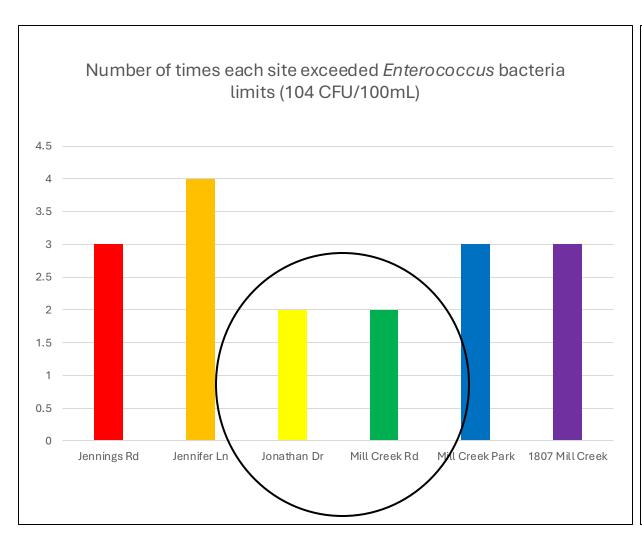
Nitrates (ppm)

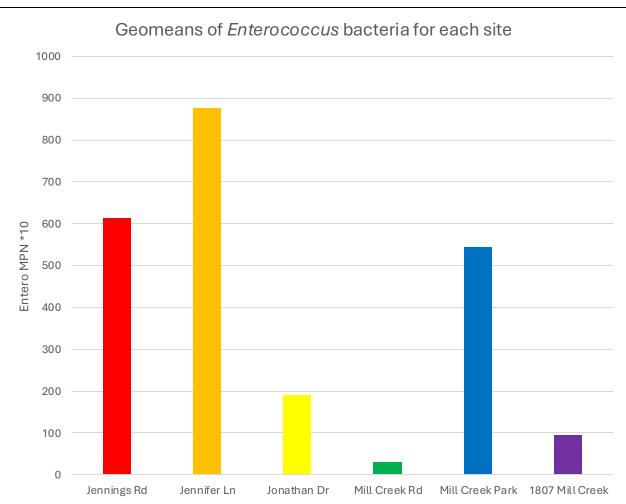


Salinity (Conductivity)



- Blue = low salinity (<1 ppt)
- Purple = slightly higher
 salinity (10-12 ppt)
- Red = high salinity (24 ppt)


Onto chlorophyll...



Chlorophyll

Bacteria (Enterococcus)

Site #2- Jennifer Lane (Highest Geomean and Frequency of Enterococcus (> 104 CFU/100 mL)

Concluding remarks

Water quality conditions are as expected regarding temperature, salinity, and pH

Jonathan and Mill Creed Rd showed lower bacteria levels. May be due to new sewer infrastructure

Site #2 (Jennifer Lane) would benefit from an increase in water flow

A continued increase in new infrastructure could help decrease bacteria levels

Concluding remarks continued

Acknowledgements

I would like to thank Save Barnegat Bay for letting me take part in this research, the residents of Beach Haven West, the Marine Academy of Technology and Environmental Science, and Dr. Wnek for guiding me through this learning experience.

Thanking for watching!

Additional Sources

- BB for MVH power point slides
- Creating clarity. Home IDEXX US. (n.d.). https://www.idexx.com/en/
- El Mahrad, B., Newton, A., & Murray, N. (2022, June 27). *Coastal Lagoons: Important ecosystems*. Frontiers for Young Minds. https://kids.frontiersin.org/articles/10.3389/frym.2022.637578
- LaMotte testing guides
- *National Shellfish Sanitation Program (NSSP)*. Dep.nj.gov. (n.d.). https://dep.nj.gov/wms/bmw/national-shellfish-sanitation-program-nssp/
- Rosenzweig, T., Steiner, S. (2023). Ecological Implications of Commercial Development: An Assessment of Flow Velocity and E. coli Presence in Beach Haven West, NJ. Save Barnegat Bay Student Grant Program.